Cost Estimating Techniques

The basic types of cost estimates

"Prediction is very difficult, especially if it's about the future." [disputed]
-Niels Henrik David Bohr (1885-1962), Danish physicist and Nobel laureate

Acknowledgments

- ICEAA is indebted to TASC, Inc., for the development and maintenance of the Cost Estimating Body of Knowledge (CEBoK®)
- ICEAA is also indebted to Technomics, Inc., for the independent review and maintenance of CEBoK®
- ICEAA is also indebted to the following individuals who have made significant contributions to the development, review, and maintenance of CostPROF and CEBoK®
- Module 2 Cost Estimating Techniques
 - Lead authors: Crystal H. Rudloff, Kenneth D. Odom, Colleen M. Craig
 - Assistant author: Daniel V. Cota
 - Senior reviewers: Richard L. Coleman, Richard B. Collins II, Fred K. Blackburn, Kevin Cincotta
 - Reviewer: Laurette Sullivan, Karyn L. Sanders
 - Managing editor: Peter J. Braxton
Cost Estimating Techniques Overview

- **Key Ideas**
 - Cost Estimating Techniques
 - Analogy
 - Parametric
 - Build-up
 - Extrapolation from Actuals
 - Cost Element Structure (CES)

- **Analytical Constructs**
 - Basic Mathematical Operations
 - Addition, Multiplication, Powers
 - Ratios and Linear Relationships
 - Curve Fitting
 - Hierarchical Tree Structure

- **Practical Applications**
 - Estimate Development
 - Cross-checks

- **Related Topics**
 - Below-The-Line (BTL) Factors
 - Schedule Estimating
 - Operations and Support (O&S) Estimating
A Bridge to the Future

The Cost Estimating Framework

Past
Understanding your historical data

Present
Developing estimating tools

Future
Estimating the new system

- Identical, off-the-shelf item
 - Catalog price

- Identical items / capabilities
 - Predicted inflation - recent historical trends

- Manufactured items
 - Learning curve - complete production run

- Similar new development items
 - CERs - historical costs from several programs

- Dissimilar new development items
 - Adjusted CERs - historical costs from several programs + paradigm shift

The further in the future you want to estimate, the further back you need to go into the past!
<table>
<thead>
<tr>
<th>Cost Estimating Techniques Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Core Knowledge</td>
</tr>
<tr>
<td>- Introduction</td>
</tr>
<tr>
<td>- Uncertainty and Risk</td>
</tr>
<tr>
<td>- Cost Estimating Techniques</td>
</tr>
<tr>
<td>- Using Cost Estimating Techniques</td>
</tr>
<tr>
<td>- Comparison of Techniques</td>
</tr>
<tr>
<td>• Summary</td>
</tr>
<tr>
<td>• Resources</td>
</tr>
<tr>
<td>• Related and Advanced Topics</td>
</tr>
</tbody>
</table>

Introduction

• The four essential cost estimating techniques (or methodologies) are:
 - Analogy
 - Parametric
 - Build-Up
 - Extrapolation from Actuals
• Other topics will be discussed in relation to the four essential techniques
 - Expert Opinion
Risk Terminology

- **Precision vs. accuracy**
 - **Precision** = narrow range
 - **Accuracy** = range centered on “right” answer

- **Uncertainty vs. risk**
 - **Uncertainty** = range of possible outcomes
 - **Risk** = shift of range to account for lack of accuracy of unadjusted estimates

Tip: We want estimates to be both precise and accurate, but imprecisely accurate is better than precisely inaccurate!

Warning: Uncertainty and risk are difficult but essential.

Uncertainty and Risk Example

National Oceanographic and Atmospheric Administration (NOAA)

Cost estimating, like weather prediction, is not a “repeatable” experiment!
Uncertainty and Risk Illustration

Tip: Estimating cost as an average of historical data is generally a good starting point.

Cost Estimating Techniques

- Analogy
- Parametric
- Build-Up
- Extrapolation from Actuals
Cost Estimating Techniques Basics

- Cost Estimating Techniques provide the structure of your cost estimate
 - They’re what enable you to predict future costs based on historical data
 - Techniques rely on statistical properties, logical relationships, and emotional appeal

- Four essential types
 - Analogy: “It’s like one of these”
 - Parametric: “This pattern holds”
 - Build-Up: “It’s made up of these”
 - Extrapolation from Actuals: “Stay the course”

Analogy - Method

- Comparative analysis of similar systems
- Adjust costs of an analogous system to estimate the new system, using a numeric ratio based on an intuitive physical or countable metric
 - e.g., weight, SLOC, number of users
- Other adjustments may need to be made for any estimating methodology
 - Programmatic information (quantity/schedule)
 - Government vs. Commercial practices
 - Contract specifics
 - Economic trends

AKA Comparison Technique, Ratio, Analysis of Analogues
Analogy - Application

- **Used early in the program life cycle**
 - Data are not available to support using more detailed methods
 - Not enough data exist for a number of similar systems, but can find cost data from a single similar system
- **The best results are achieved when**
 - Adjustments can be quantified
 - Subjective adjustments are minimized
 - Similarities between old and new systems are high
 1. Minimize differences to one or more that can be scaled, *then*
 2. Minimize the amount of scaling (size of adjustment factor)
- **Can be used as a cross check for other methods**

Analogy - Considerations

- **Strengths**
 - Can be used early in programs before detailed requirements are known
 - Difficult to refute if there is strong resemblance
- **Weaknesses**
 - No objective test of validity
 - Danger in choice of scaling factor
 - Which variable
 - Functional form (linear vs. non-linear scaling)
 - What slope (through origin or borrowed slope)
- **Challenges**
 - Difficult to obtain cost/technical data on old/new systems for comparison

Warning 1: An adjusted analogy is like a regression, but the slope is just a guess.

Warning 2: An adjusted analogy is, by definition, estimating outside the range of the data.
Analogy - Example

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Old System</th>
<th>New System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine:</td>
<td>F-100</td>
<td>F-200</td>
</tr>
<tr>
<td>Thrust:</td>
<td>12,000 lbs</td>
<td>16,000 lbs</td>
</tr>
<tr>
<td>Cost:</td>
<td>$5.2M</td>
<td>?</td>
</tr>
</tbody>
</table>

Q: What is the unit cost of the F-200?
A: $5.2M * (16,000/12,000) = $6.9M

Tip: The mischief in analogy most often arises in the adjustment. Why do we so readily believe a linear relationship which passes through the origin?

Warning 1: An adjusted analogy is like a regression, but the slope is just a guess.

Warning 2: An adjusted analogy is, by definition, estimating outside the range of the data.

Analogy - Uncertainty and Risk

• Uncertainty
 - Uncertainty in point of departure
 - Uncertainty in slope of adjustment

• Risk
 - Risks not “included” in analogy system
 - Historical growth of scaling quantity

Analogy - Uncertainty/Risk Illustration

Parametric Estimating - Method

- A mathematical relationship between a parameter and cost
 - Parameter may be physical, performance, operational, programmatic, or cost

- Uses multiple systems to develop relationship

- Allows statistical inferences to be made

Warning: Rates, factors, and ratios in use may not be statistically based.

AKA Cost Estimating Relationships (CERs), Rates, Factors, Ratios

“This pattern holds”
Parametric Estimating - Application

• Use of Parametrics
 - Requires a good database which is relevant to the system being estimated
 - Excellent for use early in program life cycle before a detailed design exists
 - Used as the design progresses to capture changes
 • CAIV trades
 • Good as a cross-check for other methods

Parametric Estimating - Considerations

• Strengths
 - Can be easily adjusted for changes by modifying input parameters
 - Sensitivity Analysis - Can show how changes to certain parameters impact the cost
 - Objective measures of validity
 - Statistical measures for uncertainty

• Weaknesses
 - “Black box syndrome” with pre-existing CERs, commercial models

• Challenges
 - Difficult to ensure consistency and validity of data
 • Goal is to establish and maintain homogeneous data set
 - Must constantly review relationships to ensure that relationships reflect current status of relevant programs, technology, and other factors
Parametric Estimating - Example

- CER for Site Activation as a function of Number of Workstations:
 - Site Act ($K) = 82.8 + 26.5 * Num Wkstn
 - Site Activation includes site survey and site installation costs for an Automated Information System (AIS)
- Estimated based on 11 data points for installations ranging from 7 to 47 workstations
- Example expanded in Module 3

Parametric Estimating - ERP Example

- The graph below shows an example CER for ERP investment as a function of the Number of Interfaces:

Parametric - Uncertainty and Risk

• Uncertainty
 - Uncertainty in intercept and slope of regression line
 • Standard error → Confidence Interval (CI)
 - Uncertainty in distribution around regression line
 • SEE → Prediction Interval (PI)

• Risk
 - Risks not “included” in historical data set
 - Historical growth of cost driver(s)

Tip: Parametric has the strength of using statistical results to capture the uncertainty in estimating beyond the range of the data

Parametric - Uncertainty/Risk Illustration

Estimate Based on a CER (Parametric)
Parametric - Uncertainty/Risk Illustration

Calibrated CER

Uncertainty and Risk Illustration
Build-Up - Method

- Estimating is done at lower levels and results rolled up to produce higher-level estimates
 - Often the lowest definable level at which data exist
- Elements of this method could include
 - Standards
 - Time and Motion Studies
 - Well defined work flow
 - Variance Factors
 - Parts List
 - Lot Size and Program Schedule Considerations
 - Program Stage
 - Support Labor

“It’s made up of these”

AKA Engineering Build-Up, Industrial Engineering (IE), Time Standards, Standard Labor Hours, Catalog/Handbook, Detailed Cost Estimating

Build-Up - Application

- Used when you know detailed product information at the lowest level (i.e., hours, material, etc.)
- Used in a manufacturing environment where Touch Labor can be accurately estimated
 - Touch Labor = direct work on product
 - As opposed to support or management functions

Tip: Engineering drawings (e.g., CAD/CAM) or site surveys are almost always required to do a build-up

Warning: In application, “engineering judgment” often masquerades as engineering build-up, because they are both bottom-up
Build-Up - Considerations

- **Strengths**
 - Easy to see exactly what the estimate includes
 - Can include Time and Motion Study of actual process
 - Variance Factors based on historical data for a given program or a specific manufacturer

- **Weaknesses**
 - Omissions are likely
 - Small errors can be magnified

- **Challenges**
 - Expensive and requires detailed data to be collected, maintained, and analyzed
 - Detailed specifications required and changes must be reflected

Build-Up - Example

- **Problem:** Estimate hours for the sheet metal element of the inlet nacelle for a new aircraft
 - Similar to F/A -18 E/F nacelle which has a 20% variance factor (actuals to standards) and a support labor factor of 48% of the touch labor hours
 - The standard to produce the sheet metal element of the new inlet nacelle is 2000 touch labor hours

- **Solution:** Apply F/A-18 E/F factors to the standard touch labor hours
 - 2000 hrs x 1.2 = 2400 touch labor hours
 - Add the support factor of 48% to get the total hours estimate of 2,400 x 1.48 = 3,552 hours
Build-Up - Uncertainty and Risk

- Uncertainty
 - Uncertainty in Design Specs
 - Uncertainty in performance to standards (labor)
 - Uncertainty in unit costs, scrap rates (material)

- Risk
 - Omissions
 - Historical growth of design specs
 - Difficulty of integration

Extrapolation from Actuals

- Extrapolation from actuals is a subset of some methods
 - Using actual costs to predict the cost of future items of the same system

- Extrapolation is used in several areas, which include:
 - Averages
 - Learning Curves
 - Estimate at Completion

 AKA Averages; Learning Curves, Cost Improvement Curves, Cost/Quantity Curve; Estimate at Completion (EAC), or Earned Value (EV)
Extrapolation from Actuals - Application

- Best application is for follow-on production units/lots
- Requires accurate cost database
 - At an appropriate level of cost detail
 - Validate and normalize data
- Once sufficient actuals are accrued, can be used to determine Estimate At Complete (EAC) throughout remainder of current phase

Tip: Improved integration between the cost estimating and earned value functions has lead to increased prevalence of this estimating method

Extrapolation from Actuals - Considerations

- Strengths
 - Utilizes actual costs to predict future costs
 - Can be applied to hours, materials, total costs
 - Highest credibility and greatest accuracy when properly applied
 - Many government bodies require or encourage the use of this technique
- Weaknesses:
 - Work to date may not be representative of work to go
 - Extrapolating beyond a reasonable range
- Challenges:
 - Unknown events affecting bookkeeping of actuals
 - Changes in cost accounting methods
 - Contract changes affecting actuals
 - Configuration changes, process changes all have impacts
Extrapolation from Actuals - Uncertainty and Risk

- Uncertainty
 - Uncertainty in Learning Curve
 - Uncertainty in EAC

- Risk
 - Insufficient cost history
 - Cost history not representative of future work
 - Unrealistic baselines, excessive optimism, and the EAC “tail chase”

Expert Opinion
Expert Opinion - Method

- Uses an expert or a group of experts to estimate the cost of a system
 - One-on-one interviews
 - Round-table discussions
 - Delphi Technique

Tip: Expert Opinion refers to direct assessment of costs. Expert judgment is expected to be applied in any of the previously-described legitimate cost estimating techniques.

Warning: Expert Opinion alone is not widely considered to be a valid technique.

Expert Opinion - Application

- Only used when more objective techniques are not applicable
- Used to corroborate or adjust objective data
 - Cross check historical based estimate
- Use for high-level, low-fidelity estimating (e.g., sanity check)
- Last resort

Tip: Expert Opinion is the least regarded and most dangerous method, but it is seductively easy. Most lexicons do not even admit it as a technique, but it is included here for completeness.
Expert Opinion - Considerations

- Strengths
 - Good cross check of other estimate from Subject Matter Expert (SME) point of view
 - Provides expert perspective that facilitates understanding

- Weaknesses
 - Completely subjective without use of other techniques
 - Low-to-nil credibility
 - Difficult to run risk around an expert opinion

Tip: It is preferable to find data to support a credible basis, which may jibe with the expert-based estimate if it is implicitly founded on the same data

Expert Opinion - Uncertainty and Risk

- Uncertainty
 - Human tendency to (significantly) understate error bands

- Risk
 - Faulty recollection of “anecdotal actuals”
 - Gaming
 - Excessive optimism (or conservatism)
Using Cost Estimating Techniques

- Estimate Requirements
- Top Down vs. Bottom Up
- Cost Element Structure (CES)
- Technique Selection
- Checking Results
- Documentation

Estimate Requirements

- Why are we developing this estimate? What will it be used for?
 - Milestone A, B, or C decision
 - Developing a budget
 - Developing a “ballpark” or rough order of magnitude (ROM) estimate
 - Comparing alternatives
 - Developing or evaluating proposals
Top Down vs. Bottom Up

- The below definitions are correct, although in practice many terms are used as if they are interchangeable
- **Top Down vs. Bottom Up** refers to the origin of the estimate
 - Top down (note singular) means either a target or a top-level estimate, which is then allocated to lower levels of the WBS
 - Bottom up (note singular) means estimated at a lower level and then rolled up
- **Top-Level vs. Lower-Level** (estimate) refers to the level at which an estimate is performed, whether or not it is allocated or rolled up, respectively
- **Build-Up** is a specific estimating methodology
- Usual associations:
 - {Top-Level estimate} or {cost target or Price to Win (PTW)} with {Top Down}
 - {Lower-Level} with {Bottom Up}
 - {Bottom Up} with {Build-Up}

Cost Element Structure

- Determine what needs to be estimated and develop an appropriate **Cost Element Structure (CES)**
 - CES Dictionary defines what is included in each element
 - Characteristics associated with cost elements that are routinely used to classify costs
 - Program Phase: Development, Production, O&S
 - “Color of Money”: RDT&E, Procurement, O&M
 - Funding Source
 - Non-Recurring or Recurring
 - Direct or Indirect

Tip: Be sure to estimate at a level of the CES that is well supported by defensible data
Technique Selection

- Review available techniques
- Compare alternatives
- Select or develop appropriate technique
- Identify primary and secondary techniques

Each cost estimating technique has strengths and weaknesses and can be applied at different times in the life cycle of a cost estimate.

Checking Results

- **Cross Checking** your results greatly increases credibility
 - Example: A parametric-based estimate can also show an analogy as a “reasonableness test”
 - Doesn’t necessarily result in the exact same number, but should be a similar number (same order of magnitude)
- An independent* estimate is more detailed than a cross check and attempts to get the same result using a different technique
 - Example: Use the results from one commercial software estimating package to validate the results of another

*Note: “Independent” has many meanings. The most stringent meaning is in Title 10 USC Section 2434 and involves an organization out of the chain of command of the acquiring agency. A looser meaning is an estimate done by an organization unbehind the program manager in funding or accountability. The loosest meaning is a separate estimate.
Documentation

• Within reason, more information is better than less
• Any information that is used in the analysis must be included in the documentation
• Documentation should be adequate for another cost analyst to replicate your technique
• Like they used to tell you in math class....

If You Don’t Show Your Work, You Don’t Get Any Credit!

Comparison of Techniques
Comparison - Advocacy

- Advocates of Build-Up drink beer and say:
 - More detailed = more accurate
 - Analogy is prey to invalid comparisons
 - Parametric is too “theoretical”
- Advocates of Analogy drink bourbon and say:
 - Like things cost like amounts
 - Build-Up is prey to omission and duplication
 - Parametric is “diluted” by less applicable systems
- Advocates of Parametric drink wine and say:
 - Most thoroughly based on historical data
 - Analogy is just a one-point CER through the origin!
 - Build-Up is prey to omission and duplication

Hey, it’s a joke,
lighten up!

Comparison - Life Cycle Applicability

<table>
<thead>
<tr>
<th>Phase A</th>
<th>Phase B</th>
<th>Phase C</th>
<th>Operations and Support (O&S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Development</td>
<td>Design</td>
<td>Production</td>
<td>Extrapolation From Actuals</td>
</tr>
<tr>
<td>Analogy</td>
<td>Parametric</td>
<td>Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Gross Estimates | Detailed Estimates

Cost Estimating Techniques Summary

- You need to have all the cost estimating techniques in your repertoire
- For each, you need to know:
 - What it is
 - When to apply
 - How to execute
 - Strengths and Weaknesses
 - Challenges
 - The supporting data required

Resources

- Integrated Defense Acquisition, Technology, and Logistics Life Cycle Management chart, Defense Acquisition University (DAU)
 - https://ilc.dau.mil/