Improvement Curves: An Early Production Methodology

Brent M. Johnstone
11 June 2015
Choice Of Learning Slope Selection Is Critical Parameter In Manufacturing Labor Estimates. Incorrect Ex Ante Predictions Lead to Over or Understatements of Projected Hours.
Issues With Choosing Slopes

“[In general, the empirical findings caution against simplistic uses of either industry experience curves or a firm’s own progress curves. Predicting future progress rates from past historical patterns has proved unreliable.”](pg. 237) - Dutton, Thomas (1984)

“Even with both an excellent fit to historical data (as measured by metrics like R^2), and meeting almost all of the theoretical requirements of cost improvement, there is no guarantee of accurate prediction of future costs.”

“...[E]ven projections based on producing an almost identical product over all lots, in a single facility, with large lot sizes, and no production break or design changes, do not necessarily yield reliable forecasts of labor hours. Out-of-sample forecasting using early lots to predict later lots has shown that, even under optimal conditions, labor improvement curve analyses have error rates of about +/- 25 percent.” (pg. 94)

- RAND (2008)

Existing Literature Provides Little Guidance On Ex Ante Selection
S-Curves

• Observed Learning Curves Are Rarely Straight Logarithmic Functions But Exhibit “S” Shape Depending On Maturity Of Product

Initially Observed Based On World War II Experience (Carr, 1946)
Early Production Issues

- Choice of Learning Curve Slope Is Particularly Difficult In Early Production When There Is Limited Actual Cost History

- Development Actuals Are High & Observed Slopes Usually Very Flat

- Early Production Actuals Begin Sharp Decrease As Initial Problems Are Being Worked In the Build
 - Engineering Changes / Corrections
 - Tooling Changes / Improvements
 - Reduction In Nonconformances (Scrap, Rework & Repair)
 - Supply Chain Disruptions Overcome

- Problem For Estimating:
 - What Kind Of Learning Curve Slope Can We Expect To See?
 - How Long Will This Steep Phase Last?
 - If We Are On A ‘Recovery’ Slope, What Are We Are Recovering To and How Quickly?
S-Curve & Basic Slopes

- Cochran (1960) Suggested A Straight-Line ‘Basic’ or ‘Characteristic Slope’ Whose Total Cost Equals Total Cost For S-Curve
Basic Slopes

<table>
<thead>
<tr>
<th>Processes</th>
<th>Typical Slope %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Machine Shop¹</td>
<td>95%</td>
</tr>
<tr>
<td>Sheet Metal Stamp¹</td>
<td>92%</td>
</tr>
<tr>
<td>Composite Automated Layup³</td>
<td>92%</td>
</tr>
<tr>
<td>Electrical Fabrication²</td>
<td>90%</td>
</tr>
<tr>
<td>Job Machining – Large Parts¹</td>
<td>88%</td>
</tr>
<tr>
<td>Electrical Subassembly²</td>
<td>85%</td>
</tr>
<tr>
<td>Composite Handlay³</td>
<td>85%</td>
</tr>
<tr>
<td>General Subassembly¹</td>
<td>83%</td>
</tr>
<tr>
<td>Major Aircraft Assembly¹</td>
<td>80%</td>
</tr>
</tbody>
</table>

Sources:

¹Cochran (1968)
²Delionback (1975)
³Kassapoglou (2013)
S-Curve vs Basic Slope

• Unit Cost On S-Curve Is Initially Larger Than ‘Basic Slope’
 – Extensive Changes To Engineering, Tooling As Well As High Nonconformance Drive Cost Of Early Units

• S-Curve Recovers To ‘Basic Slope’ After Initial Engineering, Tooling Issues Are Resolved
 – Cochran Suggested Crossover Point Occurred Around 30th Unit
 – Empirical Analysis Shows Recovery Between 30th And 100th Unit

Cost of Early Units Reflects Premium Due To Engineering, Tooling Changes & High Levels of Scrap & Rework

Crossover Point Where S-Curve Unit Cost Equals Basic Slope Unit Cost
S-Curve vs Basic Slope (Cont’d)

- S-Curve Continues Underneath ‘Basic Slope’ Until Two Lines Intersect Again At Some Future Point (Unit # 1000 For Aircraft Assembly)
 - T-1000 Chosen As Point Of Full Product & Process Maturity

- **Total Cost For Basic Curve = Total Cost For S-Curve Over 1,000 Units**
S-Curves & Basic Slopes Can Be Constructed Ex Post From Actual Data… But How Do We Identify Them Ex Ante?
Using Standards

• One Possible Answer Is Use Of Industrial Engineering Standards

• Standard – Time Necessary For A Qualified Workman, Working At An Efficient Pace and Experiencing Normal Durability & Delay, To Do A Defined Amount Of Work of Specified Quality Using Standardized Processes & Procedures

• Types of Standards Defined By MIL-STD-1567A
 – Type I – Defined by Engineering Time Study (4M) or Work Sampling
 – Type II – All Other Kinds of Standards

• New Automated Tools To Apply Standards Allow Earlier Introduction Of Type I Standards Into Program
 – At Much Lower Cost Than 1980s-Style MIL-STD-1567A Implementation
Standards-Based Approach

• Determine Standard Hours For a Task and Draw This As the “Floor” Below Which the Estimate Cannot Go
 – Type I Standards Are Better For This Approach Than Type II

• Determine Assumed Realization at T-1000 (Aircraft Assembly)
 – Realization Is Expected or Observed Actual Variation To Standard
 – This Value Is Usually Known From Prior Programs
Standards-Based Approach

• Draw a Line From T-1000 Back To T-1 Using the Appropriate “Basic Slope” Suggested By Cochran Or By Empirical Study
 – I.e., Major Aircraft Assembly – 80%

• This Is The “Basic Slope” To Which You Tend To Recover Over Time
 – At Any Given Time, The Actual Hours May Be Higher or Lower…Especially Early In The Program, When The Actual Hours Will Tend To Be Higher
Example Curve Projection

- Actual Hours
- Recovery to Basic Slope
- Basic 80% Slope
- Assumed Point Where S-Curve & Basic Slope Meet
- Variance Factor = 2 (Actuals / Standards)
- T1000 Hours
- Standard Hours

NOTIONAL
Conclusions

• Use Of I.E. Standards As Floor To Establish Basic Slope Provides Empirical Basis For Choosing “And-On” Learning Curves

• Basic Slopes Can Be Derived From Industry Experience Or Prior Program Data

• Approach Can Be Used As “Cross-Check” To Verify Projected Learning Curve Slopes
References

References (cont’d)

