A Next Generation Software Cost Model

Jairus Hihn
Jet Propulsion Laboratory, California Institute of Technology

Tim Menzies
Naveen Lekkalapudi
West Virginia University

James Johnson
National Aeronautics and Space Administration

June 10-13, 2014
2014 ICEAA Professional Development & Training Workshop
Introduction

- Purpose of this talk is to describe a new clustering algorithm that can be used to estimate software size and effort that is effective for
 - small sample sizes
 - noisy data
 - and uses high level systems information
The NASA Software CER Development Task is funded by the Cost Analysis Division to develop a software cost model that

- Can be used in the early lifecycle
- Can be used effectively by non-software specialists
- Uses data from NASA in-house built and funded software “projects”
 - CADRe but also other Center level data sources
- Supplement to current modeling and bottom up methods not a replacement
- Can be documented as a paper model
- Acceptable for use with both the cost and software communities

Year 1 building a prototype model for robotic flight software
Data Sources

Where the data came from

- CADRe
- Contributed Center level data
- NASA software inventory
- Project websites and other sources for system level information if not available in CADRe
Data Items

- Total development effort in work months
- Delivered and equivalent logical lines
- COCOMO model inputs
 - Translated from CADRE which has SEER model inputs
- System parameters
 - Mission Type (deep-space, earth-moon, rover-lander, observatory)
 - Multiple element (probe, etc.)
 - Number of instruments (Simple, Medium&Complex)
 - Number of deployables (Simple, Medium&Complex)
 - Flight Computer Redundency
 - Heritage
Data Yield

- 39 records with system descriptors mostly from GSFC and JPL
- 19 records have all data items
- 31 records have delivered LOC
- 21 records have effort
Why explore alternative modeling methods?

Because different methods exist for a reason.
Effort Estimation Methods

Sparse-data methods:

- **Analytic Hierarchy Process (AHP)**
 - Find concurrent solutions to sub-problems
- **Expert Judgment**
 - Use expert’s estimation knowledge
 - Jorgensen’s 12 best practices
- **Automated Case-Based Reasoning (CBR)**
 - Find similarities between past projects’ solutions (cases) and the current one
Many-data Estimation Methods:

- Functions: mathematical relation between variables ($y=ax^b$)
 - Regression Analysis
- Arbitrary Function Approximators (AFA): no such relation between x and y
 - Estimation by Analogy (EBA): nearest neighbor
 - Artificial Neural Networks (ANN)
 - Classification and Regression Trees (CART)
Anscombe’s Quartet

Models especially regression models built on small samples with noisy data can be very misleading
Anscombe's Quartet

- All four of the displayed plots have virtually identical statistics
 - Means, Medians, Variances
 - Regression line, R^2, F and T tests
- But visual inspection clearly shows they are very different

Anscombe’s Quartet - Using MRE

MRE can distinguish between the models

- Plotting the absolute values of the relative error it is easily seen that Model 3 fits its data the best just as intuition would indicate

MRE = Magnitude of Relative Error, $\frac{\text{abs}(\text{Predicted } - \text{Actual})}{\text{Actual}}$
Data Mining Methods

- Data mining techniques provided us with the rigorous tool set we needed to explore the many dimension of the problem we were addressing in a repeatable manner
 - Analyze standard and non-standard models
 - Is there a best functional form
 - Perform exhaustive searches over all parameters and records in order to guide data pruning
 - Rows (Stratification)
 - Columns (variable reduction)
 - Measure model performance by multiple measures
 - R^2, MRE, Pred, F-test, etc.
- Is there a ‘best’ way to tune or calibrate a model
- How important is it to us different calibration and validation datasets
Effort Estimation with Data Mining Methods

References

Spectral Clustering

- Find eigenvectors in data
 - Recursively splits the data on synthesized dimension of greatest variance
 - Principal Component Analysis (PCA) is also an eigenvector method
 - Spectral Clustering is like PCA on steroids

Why use it
- If noisy variables: they will disappear
- If irrelevant variables: they will be ignored
- If correlated variables: they will be combined together into an eigenvector
Estimation Experiment 1

- Given a set of mission descriptors
- How well can we estimate software system size?
 - Estimate delivered LOC range which could be used as input into COCOMO, SEER or other software cost models
- Use spectral clustering
 - **Centroid** = use centroid of nearest cluster
 - Test whether mean, median is best
 - **Interpolation** = interpolate in between the two nearest clusters
 - Test whether mean, median is best
Experiment 2: Given a set of mission descriptors How well can we estimate development effort?

- Uses spectral clustering only with system descriptors
 - **Centroid** = use centroid of nearest cluster
 - Test whether mean, median is best
 - **Interpolation** = interpolate in between the two nearest clusters
 - Test whether mean, median is best

- Is this method as good as using a standard cost model?
Experiment 3: Given a set of mission descriptors How well can we estimate development effort with COCOMO?

- Hold out 1 project
- Do spectral clustering with both COCOMO inputs and System descriptors for both LOC and COCOMO Effort Multipliers
- Find two nearest clusters and interpolate which yields a range for LOC and EM’s
- Run COCOMO using ranges to derive an effort distribution
- Comparing estimate to actual to evaluate
Methodology Results

- Pure clustering
 - Median measures always win
 - Has implications for our commonly used regression based models which are regression to the mean
 - Interpolation beats centroid
 - Produces lower over all MRE
 - **Median distance between two clusters is best**
 - Produces lower over all MRE
SLOC Estimation

- Results so far are promising
 - Remember that software size growth of 50-100%+ is not uncommon

Half the time, estimates within 40% of actual, using early life cycle data

MRES_of_LDELI_Prediction

3 major outliers need to look into
Comparing Estimates: Model vs Clustering

There is no difference!

- Clustering using just high level system descriptors/variables estimates just as well as running the COCOMO model
- There is no inherent reason to assume with similar inputs that other models would perform and better

Half the time, estimates within 50% of actual, using early life cycle data
Conclusions and Next steps

- Initial results very promising:
 - Reasonably accurate LOC estimators for very early lifecycle data
 - Effort estimators for very early lifecycle data.

- Next Steps under consideration
 - Expand and improve SC flight software data set and improve results
 - Add Instrument flight software
 - Test with SEER-SEM
 - Document model
 - Further explore combinations of data sets and methods for constructing clusters
 - Engage NASA software and cost community on how to pilot and improve the models