Integrating Sustainability Into Weapon System Acquisition Within The Department Of Defense (DoD)

Remmie Arnold, CCEA, Technomics
Walt Cooper, Technomics
Special thanks to our sponsor Paul Yaroschak, ODUSD (I&E)

Date: Thursday June 12, 2014
Track: Life Cycle Costing
Room: Matchless

Agenda

1. Executive guidance
2. Describe Sustainability
3. Why Sustainability Matters
4. Draft version of “DoD Guidance – Integrating Sustainability into DoD Acquisitions”
5. Initial pilot efforts and analyses
6. Way forward
Executive Guidance on DoD Sustainability

- The Strategic Sustainability Performance Plan (SSPP) includes goals for efficiency and reductions in energy, water, solid waste, and the use of hazardous chemicals and materials.

- Better Buying Power initiative establishes affordability goals

Sustainability Described

- Simply put, the capacity to endure

- Global context: A durable and self-sufficient balance between social, economic, and environmental factors

- DoD Acquisition context: Wise use of resources to minimize mission, human health, and environmental impacts and associated costs during the life cycle

- Differs from “sustainment” – DoD term for support needed to operate and maintain a system over its lifetime
The Importance of Sustainability

- The DoD acquires weapons systems that must be sustained for decades
- Resources are at a premium and in many cases dwindling
- To meet mission requirements well into the future while reducing life cycle costs, systems must be made more sustainable
- Acquisition personnel must fully understand life cycle impacts and the costs of systems to avoid inadvertently pushing costs “downstream”

Current Sustainability Related Guidance

- DoDI 5000.4: Cost Analysis Requirements Document (CARD): Provides the “what”
 - 1.2.1x.2 “Environmental Conditions”
 - 1.2.3 “Human Performance Engineering”
 - 1.2.4 “System Safety”
 - 10.4 “Environmental Impact Analysis”

- DoD O&S Cost Estimating Guide: Provides the “how”
 - Maintenance costs related to the environment
 - Disposal (including hazardous waste)
 - Worker safety
Current Sustainability Related Guidance

Army Cost Analysis Manual: Chapter 6
- Provides high level guidance for environmental cost considerations
- Maps environmental costs to Army CES elements
- Does not provide guidance on methodology for calculating costs

Portions of O&S Costs That Sustainability Investments Might Affect

<table>
<thead>
<tr>
<th>Principle</th>
<th>O&S Cost Element Most Likely Affected</th>
<th>Portion of O&S costs from which cost reductions might take place (%)</th>
<th>Effect of a 5 to 10% reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilize low-impact materials</td>
<td>Unclear</td>
<td>Not addressed</td>
<td>Not addressed</td>
</tr>
<tr>
<td>Optimize system-wide energy consumption</td>
<td>2.1- Operating Material</td>
<td>5 to 25</td>
<td>Not addressed</td>
</tr>
<tr>
<td>Improve system and component design • Durability • Standardization • Minimized over-design</td>
<td>3.0 - Maintenance (all second-level elements) 5. 1- Hardware Modifications or Modernization</td>
<td>20 to 70</td>
<td>1 to 7</td>
</tr>
<tr>
<td>Minimize life cycle waste</td>
<td>6.1 - Installation Support</td>
<td>1 to 3</td>
<td>< 1</td>
</tr>
</tbody>
</table>

If investing based on improving designs and minimizing life cycle waste could reduce costs by 5 to 10% within associated O&S cost elements, then overall O&S costs could be reduced by as much as 2 to 13%.
4. Sustainability Analysis Guide

- Introduces Sustainability Analysis and provides guidance on how to use the results to better inform tradeoff, design, and supportability decisions
- Life Cycle Assessment (LCA) compares human health & environmental impacts
- Life Cycle Costing (LCC) captures costs associated the impacts & other direct costs throughout the life cycle

Guide – Streamlined LCA (SLCA)

- **Mission (Resource Availability):** Includes impacts to resource reserves that, if depleted or unavailable, could negatively affect the ability of defense personnel to complete the mission
- **Human Health:** Includes health impacts to defense personnel or surrounding communities that could increase internal or external costs
- **Environmental Health:** Includes impacts to natural cycles (e.g., the earth’s hydrological cycle), ecosystems, or wildlife that could increase internal or external costs

[Diagram of SLCA Framework]
Guide – LCC

- Provides high-level overview of guidance for developing life cycle costs, reviews established methods to estimate life cycle costs
- Provides additional guidance for calculating sustainability related costs not traditionally assigned to the system because they are:
 - Not visible in aggregated costs (Internal to DoD)
 - Contingent upon future activities or events that may or may not happen
 - Tied to the resulting impacts borne by society and the environment (External to DoD)

Steps in Sustainability Analysis

- Step 1: Define the Scope of the Analysis
 - Establish the functional unit and system boundary for the chosen alternatives
 - The functional unit defines the capability of each alternative in comparable units
- Step 2: Develop a Life Cycle Inventory: List all relevant system inputs (resources) and outputs (emissions) that fall within the boundary established in STEP 1
- Step 3: Estimate Life Cycle Impacts: Applying the Guides predefined scoring factors
- Step 4: Estimate Sustainability-related Costs: Use results from Steps 1 and 2 to identify potentially hidden costs both internal and external to the DoD
- Step 5: Synthesize Results and Iterate
5. First Pilot Efforts

- Purpose: Quantify differences in life cycle costs and human health/environmental impacts between chrome and non-chrome primer design alternatives for:
 - Acquisition of 573 aircraft (System 1)
 - Acquisition of 117 aircraft (System 2)
- Identify information availability: Where does life cycle cost data reside and at what level of detail?
- Test underlying methodologies for cost and impact estimates:
 - What barriers arise in trying to identify life cycle costs and impacts?
 - How can methods be used to scale cost and impact analysis across the entire acquisition process?

Conclusions about LCC

- Need to consider “cost clusters”
 - Determine the group of costs with highest impact and work backwards to cost drivers that can be mitigated/eliminated

- Need to improve granularity and scope of cost accounting
 - In most cases the standard DoD O&S cost structures too aggregated and miss hidden costs.
 - VAMOSC historical data difficult to work with.
Additional Analyses

For four systems…

- Develop activity profiles for 4 MDAPs:
 - 2 Aircraft
 - Ship
 - Tracked Vehicle
- Estimate activity profiles
- Compare sustainability costs to life cycle estimates

Activity Profiles

- Attributes
 - Energy
 - Energy consumed by the system when operating and when in overhaul/availability
 - Amounts obtained from VAMOSC and OSMIS systems
 - Water
 - Water used by crew members and consumed by sub-systems, e.g., onboard cooling sub-systems, propulsion sub-systems
 - Water consumed in washdowns during routine maintenance and overhauls
 - Chemicals & materials: oils, lubricants and paints
 - Land
 - Conservation, pollution prevention, and natural resources management
 - Maintenance of training ranges
- Fleet sizes and OPTEMPOs extended from FY 2012 inventories, except for System 3, for which we included a growth ramp
- Only the O&S phase of the life cycle – 30 years for all 4 MDAPs
Notional Activity Profile for System 3

- **Energy**
 - 2,600 steaming hours underway @ 1,045 gal/steaming hour underway
 - 1,000 steaming hours not underway @ 250 gal/steaming hour not underway
 - 60 ships in Year 1, ramping to 70 ships at Year 11
 - Standard price of F-76 ($3.61) from DLA-Energy

- **Water**
 - Used Army Quartermaster Planning Guide for per-person consumption rates
 - Water for washdowns extrapolated from Army Quartermaster Planning Guide

- **Chemicals & materials**
 - Oils and lubricants: 2% of energy costs
 - Paint
 - Surface area ~80,000 ft², based on length (506ft), width (beam = 66ft) and height (3x draft = 93ft)
 - Paint Cost per ft² = $0.34
 - Labor Cost per ft² = $3.35
 - Facilities Cost per ft² = $2.62
 - Topside Painting Frequency = 2 times per year
 - Hull Painting Frequency = 1 time every 7 years

- **Land**: N/A

<table>
<thead>
<tr>
<th>SM</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 29</th>
<th>Year 30</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$642.7</td>
<td>$653.4</td>
<td>$664.1</td>
<td>$749.8</td>
<td>$749.8</td>
<td>$21,903.7</td>
</tr>
<tr>
<td>Water</td>
<td>$0.6</td>
<td>$0.6</td>
<td>$0.6</td>
<td>$0.7</td>
<td>$0.7</td>
<td>$19.6</td>
</tr>
<tr>
<td>Chemicals & Materials</td>
<td>$36.8</td>
<td>$37.4</td>
<td>$38.0</td>
<td>$42.9</td>
<td>$42.9</td>
<td>$1,252.9</td>
</tr>
<tr>
<td>Land Use</td>
<td>$M</td>
<td>$M</td>
<td>$M</td>
<td>$M</td>
<td>$M</td>
<td>$M</td>
</tr>
</tbody>
</table>

Preliminary Findings

- **Development of activity profiles**
 - Dominated by energy attribute… Amounts consumed readily available, along with standard prices
 - Water, chemicals & materials, land – require research and assumptions

- **Cost estimates of activity profiles**
 - Energy and water are straightforward
 - Energy data can be found in sources such as VAMOSC and OSMIS
 - Guidance on water consumption can be found in the Quartermaster’s “Water Planning Guide”
 - Chemicals & materials and land require research and assumptions

- **Life cycle cost estimates related to sustainability**
 - Access to estimates is an issue for contractors
 - That said, we were able to assemble O&S cost estimates for MDAPs of interest and estimate sustainability costs as a portion of total O&S costs
Chemicals/Materials and Land Use Impacts

Field level actual costs, with sustainability related impacts (such as corrosion repair and training facility upkeep), are not captured in a way that allows for easy use in estimating future costs.

- Results are reliant on SMEs (how we estimated frequency of painting System 3)
- Results are reliant on assumptions (how we estimated land use at Location 1)
- Can create useful views of costs – from “50k feet”
- Greater investment – time and money – will be needed to create a more precise estimate

Challenges

- Establishing an empirical data base
- Improving granularity in current cost collection systems without creating onerous reporting requirements
- Gaining top-level leadership support
6. Way Forward

- Continue pilot efforts to wring out methods for sustainability analysis – four more projects identified
- Develop standardized reporting procedures for collection of sustainability costs
- Increase empirical data to be used as a foundation for developing cost estimating relationships and cost factors